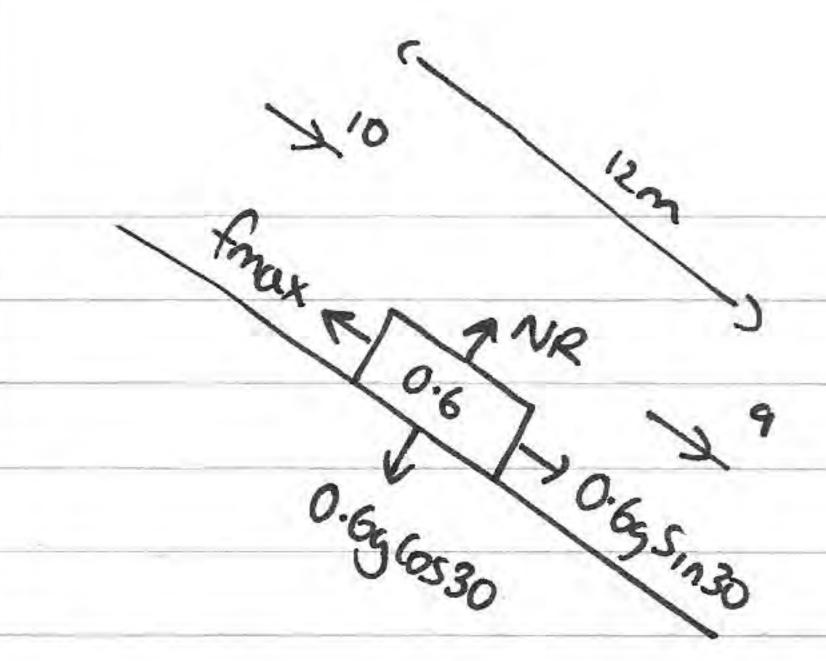

M2 JAN 05

a)
$$AU W \times 4qx = \frac{3}{5}T \times 8qx = T = \frac{4W \times 5}{24} = T = \frac{5}{6}W$$

9 9 9 11 9 11 12 x6 + (200-911) logx x = 200 logy 10


 $54\pi + (200 - 9\pi) = 2000$

A
$$Q = 200-9\pi h$$

$$= 200-9\pi h$$

=)
$$5c = 2000 - 54T$$

2000 - 9TT

$$M = 2000$$
 G (10,0)

$$KE lost = \frac{1}{2}(0.6)(10^2-9^2)$$

= 5.75.

PE lost = 0.69(6) = 3.690.

- b) KEA + PEA Wodagainst friction = LEB + PEB
 - ? WE lost + PE lost = wad against friction.
- -) $40.98 = f_{\text{max} \times 12}$ =) $3.41S = \mu \times 0.65 (\frac{\sqrt{3}}{2})$ $3.41S = \mu \times 0.65 (\frac{\sqrt{3}}{2})$ 3 = 0.67 (2sf)

4)
$$V = (6t+4)i + (t^2+3t);$$
 $0 = dV = 6i + (2t+3);$
 $1 = 4, 0 = 6i+11;$
 $1 = 12.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^2;$
 $1 = 13.4^2+4.4^$

PMT

$$a = -\frac{3500}{2500} = -1.4 \text{ m}^{-1}$$

=) dec = 1.4ms.2

c) 1250 - T

d) U=2S, $\alpha=-1.4$, V=0 $V^2=U^2+2\alpha S=0=2S^2-2.8S$ => S=223.214...m

Will by braking force = 1500 x 223.214. = 334821.42...) = 3354)

e) air resistance will be greater at furter speeds, so resistances should vary during the model.

CLM =)
$$6mu - 2mu = 3mVp + 2mVq$$

=) $4mu = 3mVp + 2mVq$
=) $3Vp = 4u - 2Vq$

=) 9eu=3Vq-4u+2Vq =>5Vq=9eu+4u

If P is reversed
$$V_P < 0 \Rightarrow \frac{2}{5}\mu(9e+4) > 4\chi$$

$$9e+4 > 10$$

$$9e > 6 \Rightarrow 1e > \frac{2}{3}$$

c) Mom Q before =
$$-2mu$$

 $+ Impulse = \frac{32}{5}mu$
 $\Rightarrow Mom Q cupter = \frac{22}{5}mu = (2m)Vq$

6)
$$(VI)$$
 $U=32Sind=19.21$
 $\alpha I=-9.8$
 $SI=-20$

$$Sin \alpha = \frac{3}{5}$$
 $\frac{5}{3}$ $\frac{6}{5}$ $\frac{4}{5}$

=)
$$t = 19.2 + \sqrt{19.2^2 - 4(4.9)(-20)}$$
 =) $t = 4.775 (3sf)$

6) (F)
$$Vel = 32(05x) = 25.6$$
 $t = 4.77...$ $OC = 25.6 \times 4.77...$ $OC = 122m(3st)$

$$(x2)$$
 $V^2 = 32^2 + 85 =)$ $V = \sqrt{32^2 + 84} = 33.2 \text{ ms}^{-1}(34)$